Алгебра
Алгебра, 14.10.2019 16:30, Полина5555111

Вопрос/Задача:

Найдите уравнение касательной к кривой y=-x^3-x+2 в точке x=0

Ответы на вопрос

Ответ
Ответ разместил: Гость

15m^2n - 5n^2m=5mn(3m-n)

Ответ
Ответ разместил: Гость

1) (4х - 3у)(4х+3у)+ (3х +4у)(4у - 3х)= 16х^2(в квадрате)+12ху-12ху-9у^2+12ху-9х^2+16у^2-12ху=7х^2+7у^2=7(х^2+y^2)

2) (х+2)² - (х-3)(х+3)=х^2+4х+4-(х^2+3х-3х-9)=х^2+4х+4-х^2-3х+3х+9=4х+13

3) (7а - 5b)(7a + 5b) - (4a + 7b)²=49а^2+35аb-35ab-25b^2-(16a^2+56ab+49b^2)=49а^2+35аb-35ab-25b^2-16a^2-56ab-49b^2=33a^2-56ab-74b^2

4) (у - 2)(у+3) - (у -1)² + (5 - у) (у +5) = у^2+3у-2у-6-(у^2-2у+1)+5у+25-у^2-5у=у^2+3у-2у-6-у^2+2у-1+5у+25-у^2-5у=-у^2+3у+18

Ответ
Ответ разместил: Гость

первая вовзрастает как логарифмическая с основанием 10> 1

вторая возрастает как степенная нечетной степени

третья возрастает как линейная с положительным угловым коэффициентом 0.5> 0

все 3 данные функции возрастают

 

первая убывает как показательная с основанием 0< 0.5< 1

вторая убывает как линенйная с отрицательным угловым коэффициентом -5< 0

третья возрастает как функция корня

убывают первая и вторая

Ответ
Ответ разместил: vlad2217890

найдем произвоную у=f(x):

y '=3x^2 -1

уравнение касательной находится по формуле:

y=f(x0)+f '(x0) *(x-x0)

f(x0)=0^3-0+2=2

f '(x0)=3*0^2-1= -1

y=2-1(x-0)

y=2-x

ответ: у=2-х

Похожие вопросы

Вопросы по предметам

Вопросов на сайте: