
Ответы на вопрос

b1+bn=66 b2*bn-1=128
b1+b1*q^n-1=66 b1*q*b1*q^n-2=128
b1+b1*q^n-1=66 b1^2*q^n-1=128
q^n-1=x
b1*(1+ x) b1^2*x=128
решаешь систему этих двух уравнений.
получаешь ур-ние: 31x^2-1025x+32=0
по дискриминанту получаешь:
х1=1/32 х2 = 32
т.к. прогр возраст, то х2 - удовлетвор усл
из второй формулы получаешь: b1=корень из 128/х
b1 = 2
sn=b1*(q (в степени n) - 1) /q-1
получается:
126=2*(32q-1)/(q-1)
q=2
q в степени n-1= x
n=6


1) 3sin(pi/2+x)-cos(2pi+x)=1
3cos(x)-cos(x)=1
2cos(x)=1
cos(x)=1/2
x=+-arccos(1/2)+2*pi*n
x=+-pi/3+2*pi*n
2) cos2x+3sinx=1
1-2sin^2(x)+3sin(x) =1
3sin(x)-2sin^2(x)=0
sin(x)*(3-2sin(x)=0
a) sin(x)=0
x=pi*n
б) 3-2sin(x)=0
sin(x)=3/2 > 1 - не удовлетворяет одз - нет решений
таким образом на [0; 2pi] корни 0; pi; 2pi
3) y=2cos2x+ sin^2x
найдем производную и приравняем к нулю
y ' = -4sin(2x)+2sin(x)cos(x)=-3sin(2x)=0
sin(2x)=0
2x=pi*n
x=pi*n/2
точки вида pi*n/2 - точки max и min
при x=pi/2
y=-1
при x=pi
y=2
тоесть
точки min pi*n/2 , где n нечетное
точки max pi*n/2 , где n четное
