
Вопрос/Задача:
Точки m и n делят отрезок ав на три равные части. найдите координаты концов отрезка, если m(1; -1; 2), n(-3; 2; 4) если можно с решением.
Ответы на вопрос


решение: произведение равно 0, если хотя бы один из множителей равен 0, поэтому исходное уравнение равносильно двум следующим:
первое:
4sin3x-1=0
4sin3x=1
sin 3x=1\4
3x=(-1)^k*arcsin (1\4)+pi*k, где к -целое
x=1\3*(-1)^k*arcsin (1\4)+pi\3*k, где к- целое
второе:
2sinx+3=0
sin x=-3\2< -1, что невозможно так область значений синуса лежит в пределах от -1 включительно до 1 включительно
ответ: 1\3*(-1)^k*arcsin (1\4)+pi\3*k, где к- целое

здесь используются подобные треугольники прямая от точки f до гипотенузы ed, образует с гипотенузой прямой угол в точке скажем a, т.к. биссектриса делит угол e пополам то углы cef и fea равны. прямая ef является гипотенузой для прямоугольных треугольников fce и fae. итак мы имеем два треугольника с двумя равными углами и одной общей стороной-гипотенузой отсюда следует, что катеты cf =fa=13см.
p.s. вот как это все в тетради оформить не

Похожие вопросы



Вопросы по предметам



